Evaluation of Casting Shrinkage and Liquid Metal Fluidity of IN-713C Alloy
نویسنده
چکیده
This paper presents the results of measurements of liquid metal fluidity and linear shrinkage of nickel alloy IN-713C in vacuum induction melting furnace Balzers VSG-2. Because of limited volume of the furnace chamber special models for technological trials were designed and constructed to fit in the mould of dimensions 170x95x100mm. Two different designs of test models were proposed: horizontal round rods and modified spiral. Preliminary studies were carried out for alloys Al-Si. Horizontal round rods test was useful for evaluation of fluidity of hypoeutectic silumin, however in case of nickel superalloy the mould cavity was completely filled in each test because of high required pouring temperature. Positive results were obtained from the modified spiral test for all alloys used in the research. Relationship between the linear shrinkage for the test rod and a specific indicator of contraction defined on a spiral was observed.
منابع مشابه
Evaluation of Metallurgical Quality of Master Heat IN-713C Nickel Alloy Ingots
The paper presents the results of evaluation of the metallurgical quality of master heat ingots and of the identification of non-metallic inclusions (oxides of Al., Zr, Hf, Cr, etc.), which have been found in the shrinkage cavities formed in these ingots. The inclusions penetrate into the liquid alloy, and on pouring of mould are transferred to the casting, especially when the filtering system ...
متن کاملEVALUATION OF PRESSURE EFFECT ON HEAT TRANSFER COEFFICIENT AT THE METAL- MOLD INTERFACE FOR CASTING OF A356 AL ALLOY
Abstract: During solidification and casting in metallic molds, the heat flow is controlled by the thermal resistance at the casting-mold interface. Thus heat transfer coefficient at the metal- mold interface has a predominant effect on the rate of heat transfer. In some processes such as low pressure and die-casting, the effect of pressure on molten metal will affect the rate of heat transfer a...
متن کاملEvaluation of Heterogeneous Densification, Anisotropic Shrinkage and Rheological Behavior of Ceramic Materials during Liquid Phase Sintering by Numerical-Experimental Procedure
The effective shear and bulk viscosity, as well as dynamic viscosity, describe the rheological properties of the ceramic body during the liquid phase sintering process. The rheological parameters depend on the physical and thermo-mechanical characteristics of the material such as relative density, temperature, grain size, diffusion coefficient, and activation energy. Thermal behavior of the cer...
متن کاملEvaluation of hardness and wear resistance of nano-sized titanium-carbide-reinforced commercially cast aluminum alloy matrices
Production of aluminum matrix composites is widespread because these material provide enhanced mechanical properties compared to aluminum. One the most important parameters of metal matrix composite production is uniform distribution of reinforcing nanoparticles in matrices using the stir-casting method. Second is ensuring high wettability, which is determined by evaluating the properties of ma...
متن کاملLOCAL SQUEEZING CASTING INFLUENCE ON THE COMPACTNESS OF AlSi10Mg ALLOY CASTINGS
Casting solidification brings to the shrinkage in the liquid state, solidification shrinkage and shrinkage in the solid state. Recently, technologies of die and gravity casting have increased the number of highly functional castings, which have been characterized with the very complex geometry. due to the different wall thickness in these castings, as well as the high solidification rates, prem...
متن کامل